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Integrals of motion of the Haldane-Shastry model 

J C Talstra and F D M Haldane 
Josepli Henty Laboratories, Princeton University, Princeton. NJ 08544, USA 

Received 7 November 1994 

Abstract. In his paper we develop a method for constructing all the integrals of motion of 
the SU@) Haldane-Sh3stry model of spins, equally spaced around a circle. interacting through 
a I / ?  exchange interaction. These integrals of motion respect the Yangian symmetry algebra 
of the Hamiltonian. 

The p a s  few years have seen an extensive study of exactly solvable quantum many-body 
systems with l / rZ interactions. The simplest member of this family is the S U ( p )  Haldane- 
Shastry model (HSM) with Hamiltonian [1,2]: 

describing N particles with an internal spin degree of freedom that can take on p different 
values, residing on equally spaced sites on a ring: { z j  = e x p ( 7  j ) ] ,  For p = 2 it describes 
spin-f particles. The operator Pij permutes the spin of two particles at sites i and j .  
The energy levels of this model turn out to have huge degeneracies (beyond the regular 
global S U ( p )  symmetry), signalling the presence of a large non-trivial symmetry algebra. 
In [3] this algebra was identified as the Yangian, a Hopf algebra introduced by Drinfel’d 
in 1986 141. It describes the elementary excitations of this model: spinons. These spinons 
obey semion (halo fractional statistics for p = 2. 

The fact that this Yangian algebra commutes with the Hamiltonian hints at the 
integrability of this model. However, the traditional method of proving integrability, 
i.e. construction of a set of commuting extensive Hermitian operators [HI, Hz, . . .}, so 
called invariants, has so far been unsuccessful. Invariants up to H4 have been ‘guessed‘ 
[3, 51. Minahan and Fowler [6] and Sutherland and Shastry [7] introduced sets of invariants 
that commute with the Hamiltonian, based on operators introduced by Polychronakos 181. 
However, the generating functions for these sets are essentially the trace of the transfer 
matrix and thus contain only elements of the Yangian algebrat. 

In this paper we will construct a set { H a ]  of extensive operators that commute among 
themselves and with the Yangian. In order to do this we have to consider a more general 
dynmical model in which the particles are allowed to move along the ring: the Calogerc+ 
Sutherland model (CSM) with an internal degree of freedom. This model, which has been 
studied in [8, 91, has the following Hamiltonian: 

t The authors of [6] claim to have found the Hamiltonian Hz in their third-order invariant, but in reproducing 
their algebra we did not find any such term; in fact we have only recovered Yangian operators. 
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When A -+ CO, or equivalently A + 0, the particles 'freeze' into their classical equilibrium 
positions, and, barring some subtleties, we recover the spin Hamiltonian H2. 

The reason for this diversion through the dynamical model to obtain the constants of 
motion is the following: the so-called quantum determinant of the transfer matrix, an object 
that commutes with the Yangian algebra and therefore a natural candidate for the generating 
function of the constants of motion, happens to be scalar in the spin model (i.e. when 
h -+ 0). as we shall see below. But in the general dynamical model this is not the case, 
and by carefully taking the l i t  A + CO we can isolate a generating function for the (Un). 

Let us first review the r61e of the Yangian algebra in the dynamical model. A more 
extensive treatment can be found in [ 10,111. The integrability of the CSM is based on the 
existence of the transfer-matrix TUb(u) that commutes with the Hamiltonian: 

J C Talstra and F D M Haldane 

m 
Tab@) = 8" + 

Lij = Sijzja, + (1 - 8ij)AOijPij 

where XYb, a, b = 1,. . . , p acts as la)(bl on the spin of particle i ,  and Oij = zr/(zi - z j ) .  
This transfer matrix satisfies the Yang-Baxter equation: 

(4) 
with Rw(u) = U + hPw and T o @ )  = T ( u )  @ 1, T'(u) = 1 @ T ( u ) .  For the purposes 
of this paper we will deal with another form of the same transfer matrix. introduce the 
following representation of the so-called Dunkl operators [l 11: 

&(U - u)T0(u)T'(u) = T'(u)T0Q)Rw(u -U) 

5, 5 hziaZi + 

21 + zj 
8 ,  - - 

zi - zj 

= hzi&, + ;A c ( w i j  - sgn(i - j ) ) K i j  
j ( # i )  

(5)  
w . .  - 

where Ki, is the operator that permutes the spufial coordinates of particles i and j .  These 
Dunkl operators commute: 

[Bi, 41 = 0 (6) 
but are not covariant under permutations: 

defining a so-called degenerate 4 n e  Heck algebra. In term of these Dunkl operators we 
can define a transfer matrix that also obeys the Yang-Baxter equation: 

P@)= ( 1 + - )...(*+2%), 
U - Dj U - D N  

It satisfies equation (4) trivially, since the {hi) commute amongst themselves and commute 
with the Pol. since the latter only act on spin degrees of freedom: furthermore, 1 + * U-D, 
is the elementary transfer matrix with s p e c ~ a ~  parameter U - bi. TO retrieve T O ( U )  from 
fob) we have to apply a projection ll to T o  that replaces every occurrence of with 
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once ordered to the right of an expression (this is equivalent to having the unprojected 
operator act on wavefunctions that are symmetric under simultaneous permutations of spin 
and spatial coordinates) [ll].  We will drop the '0' subscript on T ( u )  from here on. 

Normally the conserved quantities are derived from a Taylor expansion of the trace 
of the transfer manix. In this case that just gives us combinations of Yangian operators, 
elements of the symmetry algebra. This set does not even contain the Hamiltonian. As 
pointed out by various authors [12,4,11], there is another quantity that commutes with the 
Hamiltonian, derivable from the transfer matrix: the quantum determinant, 

Det , (W))  = ~ C ( ~ ~ " I ~ , ( U - ~ ( P -  I ) ) T ~ ~ ( u - ~ ( P - ~ ) ) . . . T , , ( ~ ) .  (9) 
OESp 

It satisfies [ T ( u ) ,  Deb(T(u))] = 0. It has been computed in [ l l ]  as: 

Deb(T(u)) = n Deb(?(u))n= n n 

where (making the dependence on A explicit): 

Now, obviously: 

@(U, A ) ,  ?(U, a)]  = 0, 

This holds since the hi's commute with each other and the PQ'S . The projector does not 
obstruct the calculation since a product of projections is the projection of the product- 
both ?(U) and &U) are symmetric under simultaneous permutation of spin and spatial 
coordinates [ll]. The eigenvalues of &U) are also known: for every partition 1111 there is 
an eigenvalue: 

N 
&'" '(U) = n U - hnj - h(j  - f ( N  + 1)). _ _  

j=1 

We notice that as R + 0, i.e. in the limit of the HSM, all eigenvalues become identical 
and &u,O) is a multiple of the identity operator. Thus no non-trivial constants of 
motion are contained in &U, 0). Nevertheless, let us study (12) for small A. Writing 
? ( U , f i )  = C,h"?&); A(u ,h )  = C,h"A,(u): 

0 = [ f ( u , A ) ,  &u,A)l 

= [%(U), A o ( ~ ) l  + f i  ( [ f ( u ) ,  AI(u)I + [?,(U), Ao@)l> + Wfi'). (14) 

The O@O) term is trivially zero. The rest of this paper will focus on the vanishing of the 
O(h) term. As we shall show below, [?l(u), &(U)]  = 0. Therefore we have the important 
result [ ? ~ ( u ) ,  81(u)J  = 0, i.e. the OR) term in 6 ( u , h )  commutes with the transfer matrix 
(and therefore the Yangian) of the Haldane4hastry spin model. Furthermore, it will also 
become apparent that 

[& (U) ,  &(U')] = 0. (15) 
So we can take 6 l ( u )  to be the generating function of the constants of motion of the HSM! In 
order to establish these results we first need to prove the following corollary: z;L3,,8o(u) = 0 
when evaluated with the particles at their equilibrium positions, i.e. z, = e x p ( y  j ) .  

From equation (11) we have &(U)  = n i ( u  - pi). Since we know that &(U) is scalar 
we can evaluate it by having it act on any convenient state, e.g. the one where all particles 
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have identical values for their internal degree of freedom (for p = 2 we would say: all 
spins pointing up). That is to say. the permutations reduce to 1. This has been shown in 
[ll]: 
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&(U) = det(u - 0) 

hZi 
zi - zj 

Oij = - (1 --&j), 

Then using a,detA(x) = Tr[A-'a,A(x)]det[A(x)] we have: 

Now evaluate the trace in a basis where 0 is diagonal. This can clearly be done for 

eigenvalue A ( i ( N  + 1) - n). Then 
h -+ 0 and zj = e x p ( T j ) .  0 has eigenvectors $", where ($")j = exp(7jn). 2ni . with 

Using 

l o  otherwise 
we find: 

Therefore a&u) = o at zj = e x p ( y j ) .  
From expanding 8 ( u , h )  to O(h) in (11) we have 

Then, with the corollary and the fact that [A, PjJ = 0 for all i. j (the Dunk1 algebra (7) is 
satisfied for h = 0 as well): 

[Al(u),  &(u)I = 
i=I 
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With this result we find: 

This can be checked by multiplying the LHS and RHS by A(u, PI). Now let us expand ?(U, h )  
to O(h): 

+O(h2) 

E ?O(U) +h?i(u) +O(h2).  (24) 
It is now obvious how [?l(u), &(U)]  = 0. The contribution from the first term in curly 
brackets in (24) vanishes by virtue of equation (22). As far as the second term is concerned, 
the commute amongst each other and with the Poj, and [zi.3,,, & ( U ) ]  = 0, as we showed 
before. 

So far we have established that AI(u)  respects the Yangian symmetry, but we also need 
to show that it is a good generator of constants o,f motion in that it commutes with itself 
at a different value of the parameter U :  [Ar(u), Al(u’)] = 0. It will be enough to prove 
this on the space spanned by the Yangian highest-weight states (YHWS). These states are, 
as their name implies, the highest-weight states of a representation of the Yangian algebra. 
All other states in the model are generated by acting on these YHWS with the elements of 
the Yangian algebra, i.e. the transfer matrix. Since A ~ ( u )  commutes with ?o(u) for any 
U ,  [AI(U),&I(U’)~ = 0 will therefore also hold on the non-highest-weight states. First of 
all we should note that AI(u)  and Ar(u’) leave the space of YHWS invariant. This follows 
from the fact that all such states Ir) are annihilated by ?f’(u) with a > b (see [I 11). But 
since ft6(u) commutes with A1 ( U ) ,  ?lb @, (u)[r)) will also be 0 for a z b. 

The proof that A,(u)and A1(u’) commute hinges on the existence of an operator that 
commutes with both these AI’s and is non-degenerate. Such an operator is T{’(u). Its 
eigenvalues are given by 1111: 

The polynomials Pi@), i = 1 . . . p - 1 characterize the representation of the Yangian. 
As was found in [11,13], every degenerate supermultiplet in the S U ( p )  HSM (i.e. every 
representation of the Yangian) can be represented by a sequence of N + 1 binary digits 
0 or 1. The first and last (entry 0 and N )  are always 0. For an S U ( p )  model the string 
cannot contain more than p - 1 consecutive 1’s. A set of k - 1 consecutive 1’s is called a 
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k-string. To generate the polynomials replace every 0 in the motif by ')(', except the first 
and last 0, which become a '(' and a ')' respectively. We then have groups of 1's enclosed 
in parentheses, called a mot$. The polynomial P L O  has its zeroes at -1 + the positions 
of the ')' bounding the k-strings on the right. Let us consider an example to clarify this: 
for SU(3), N = 14 the sequence 01101ooO1100100 has four 1-strings, two 2-strings and 
two 3-strings. This implies polynomials PI@ = @ - 5;)@ - 6+)@ - IO$)@ - Is:), 
P 2 0  = @ - 4$)@ - 12;) and P3@) = @ - Zf)@ - 9;). 

The eigenvalues (25) are obviously independent rational functions of U, and T'p(u) 
is non-degenerate. If Ir) is a Yws with motif r then 2\l(u)lr) and Al(u')lr) are both 
xalar multiples of IF) since they have the same T:P(v)-eigenvalue ([T;'(U), AI@)] = 
[T;p(u), A!(u')l = 0). So in this YHWS-space both &(U) and 81(u') are diagonal, and 
thus Commute. 

In the remaining part we will reproduce the integrals of motion that have already been 
found [3,5], and point out some subtleties in their construction. As is customary for the 
Heisenberg model with nearest-neighbour exchange. we take r, (U) = (d/du) In(A1 (U)) 
rather than 61(u) to be the generating function for the integrals of motion, so that the 
invariants will have an additive spectrum. When expanded in powers of U it reads: 

J C Talstra Md F D M Haldane 

m 

E u-("+I)H" (26) 

where we have reinserted the projection operator that turns Kjj + P j j ,  when ordered to the 
right of an expression. We have worked out the first few H's. With z i j  = zi - z j  we have: 

n=O 

The prime on the summation symbol indicates that the sum should be restricted to 
distinct summation-indices. To compute the previous expressions we normally ordered 
the zia,, to the right in equation (26) and then put z j  = exp(Tj ) .  The identity 
w i j w j k  + WjkWki + wti w i j  = - 1  which lies at the heart of the integrability of these l / r Z  
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models is very useful in the reduction of these expressions. P indicates the total momentum 
and we will discuss its interpretation later on. Notice the absence of Yangian operators as 
well as terms containing both permutations and derivatives. The expressions in equation 
(27) can be seen to coincide with those reported previously [3lt, lending credibility to this 
way of deriving the integrals of motion. Unfortunately, for large n it becomes prohibitively 
complicated to compute Ha. 

We also have an altemative way of verifying the validity of these constants of motion. 
We will proceed to compute the eigenvalues of the operators Hn and compare these with the 
‘rapidity’ description of the eigenvalues in [3]. We will constrain ourselves to the SLT(2) 
case to simplify the algebra. 

As is well known [ 141 the roots of &U, A)-i.e. the poles of the transfer matrix ?(U, A), 
see equation (24ha re  given by the solutions of so-called Bethe ansatz equations, which 
only depend on the two-particle phase shift. In the case of the CSM it is rrh sgn (kt - k2). 
Notice that this phase shift only depends on the ordering of the momenta kl and k2. This 
is why these models are interpreted as describing an ideal gas of particles with statistics 
that interpolates between bosons (A = 0) and fermions (A = 1). In the dynamical model 
(2) the particles have charge and spin. Therefore we obtain two coupled sets of ‘nested‘ 
Bethe ansatz equations-for the general case p f 2 there are p equations. They have been 
presented in [l5]: 

I1 M 
nsgn(kj - kj) + 

We have reinstated L, the circumference of the circle, to obtain the dimensions correctly. 
Notice how A drops out of these equations due to the fact that the full Hamiltonian is scale 
invariant (a peculiarity of the I/r*-type potentials). So rather than sending A + 0 we 
should let A + CO. There are N equations defining the {ki] (one for every particle) with 
charge quantum numbers (Ii}. Furthermore, we have M equations defining the auxi l iq  
momenta (A-}. M is the number of particles with a spin $. The (Ju) are their spin quantum 
numbers. The I ’ s  and J’s are distinct integers or half-odd integers, depending on the parity 

Furthermore, we should restrict the Hilbert space to states that only cany spin 
excitations, and no charge excitations (these elastic modes unfortunately do not acquire 
a gap as h + 0):. As in, for instance, the ID Hubbard model, we accomplish this by 
leaving the charge quantum numbers in their ground-state configuration and only exciting 
the {J-]. Let us therefore first analyse the absolute ground state which has M = f N  (for N 
even), so there are twice as many k’s as A’s. The I ’ s  and J’s are consecutive and spaced by 
one unit. Then equation (29) tells us that between every two A’s there must be two k’s. In 
a spin excited state we have M < $ N  and by leaving openings in the J-distribution we can 

t We should point out a comfion in equation (7) of [3] where - f H 2  should be replaced by +AH,. This changes 
the invariant in a harmless manner, but this is relevant for comparing the eigenvalues of the operators in that article 
and the ones that we will find later on. 
? This is why we do not use equation (13) which gives a much more direct expression for the eigenvalues of 
A(u.8); however, one does not h o w  apriori whether an eigenvalue belongs to a pure spin or charge excitation. 
or to a mixture of both. 

Of N and M - N .  
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have more than two k's sitting between every pair of A's. Notice that this equation does not 
fix the value of the A's, just their positions with respect to the ki's. From equation (28) we 
learn that when we order the (ke] such that k, c k j  for i c j :  k, % A (i - i(M + 1)) = kp. 
There is, however, an O(l/A) = O(h) correction through the A's. Whenever a A sits 
between two k's they will be drawn together by l / A .  This information is contained in 
6ki. Now, in the same way that the constantr of motion are contained in the O(h) term in 
A(u ,  h),  their eigenvalues are determined by the O(l/A) corrections to the k's. As A[u ,  h)  
has eigenvalues n E 1 ( u  -k j ) ,  r ( u ,  h)  = & In A(u)  = ro+hrl+. . . must have eigenvalues 

J C Tasttu and F D M Huldane 

1 
U - ky - (1/A)6ki ' 

- I 
u-ki - 

So for rl(u) acting on a state characterized by a set ( A a ]  we find its eigenvalue: 

We will now label the Ae's by m,, their positions relative to the k's,  i.e. if A, sits between 
k, and k,+l,  then m. = r .  We see that the ma have to be at least two units apart, 
since there are at least two k's between A's according to equation (29). Now writing 
;sgn(A, - ki )  = @(Aa - k i )  - (0 is the step function), we have: 

M 
= const + C c , ( m a ) .  

For small n we can evaluate cn(m.) exactly: 
n=1 

cI(m,) = m a  

d m . )  = ma& - N) 

~ 3 [ m . )  = p d m ,  I - N)(2m,  - N )  + $(N2 - I)m, 

d m . )  = 4 m r r )  (&%A + 6 ( N 2  - 1)).  
These results coincide nicely with the numerical values of [3] when we interpret the mu 

as the rapidities of the HSM! We notice that it is consistent to interpret the momentum term 
P in (27) in H I  and H3 as C u m , ,  i.e. the degree of a polynomial YHWS wavefunction. 
Non-YHW, non-polynomial wavefunctions in a Yangian multiplet have the same value of 
P, since P commutes with the Yangian algebra 

In conclusion, we have outlined a method for obtaining the constants of motion of the 
HSM as a strong coupling limit of the CSM with particles with intemal degrees of freedom. 
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Although the task of actually obtaining the invariants is quite cumbersome, it can be done in 
principle. Given the relatively simple structure of the invariants we expect there to be some 
technique that could simplify the computation considerably. The construction of integrals 
of motion presented in this paper provides us with extensive operators that commute with 
each other and the Yangian symmetry algebra. By computing eigenvalues of the invariants 
through the nested Bethe ansatz and comparing them with previous numerical results [3], 
we have provided evidence for the validity of the approach. It would be interesting to 
analyse the cause of the miraculous absence of terms containing mixtures of permutations 
and derivatives. 
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